

11 JPA & Hibernate Query Hints

www.thoughts-on-java.org

JPA Hints

1. javax.persistence.lock.timeout (Long – milliseconds)

This hint defines the timeout in milliseconds to acquire a
pessitimistic lock.

2. javax.persistence.query.timeout (Long – milliseconds)

The javax.persistence.query.timeout hint defines how long a query is
allowed to run before it gets canceled. Hibernate doesn’t handle this
timeout itself but provides it to the JDBC driver via the JDBC
Statement.setTimeout method.

3. javax.persistence.cache.retrieveMode (CacheRetrieveMode – USE |
BYPASS)

The retrieveMode hint supports the values USE and BYPASS and tells
Hibernate if it shall USE the second-level cache to retrieve an entity
or if it shall BYPASS it and get it directly from the database.

4. javax.persistence.cache.storeMode (CacheStoreMode – USE |
BYPASS | REFRESH)

This hint defines how Hibernate shall write changed entities to the
second-level cache. It can either USE the cache to add entities to the
cache and updated existing ones, or BYPASS it for entities that are
not already stored in the cache and only update the existing ones or
REFRESH the entities located in the cache before they get retrieved
from it.

http://www.thoughts-on-java.org/

11 JPA & Hibernate Query Hints

www.thoughts-on-java.org

5. javax.persistence.loadgraph (EntityGraph)

The javax.persistence.loadgraph hint allows you to provide an entity
graph as a load graph to the query to define eager fetching
specifically for this query.

You can read more about entity graphs in JPA 2.1 Entity Graph – Part
1: Named entity graphs and JPA 2.1 Entity Graph – Part 2: Define
lazy/eager loading at runtime.

6. javax.persistence.fetchgraph (EntityGraph)

You can use this hint to provide an entity graph as a fetchgraph to a
query.

You can read more about entity graphs in JPA 2.1 Entity Graph – Part
1: Named entity graphs and JPA 2.1 Entity Graph – Part 2: Define
lazy/eager loading at runtime .

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-1-named-entity/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-1-named-entity/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-2-define/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-2-define/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-1-named-entity/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-1-named-entity/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-2-define/
http://www.thoughts-on-java.org/jpa-21-entity-graph-part-2-define/

11 JPA & Hibernate Query Hints

www.thoughts-on-java.org

Hibernate Hints

7. org.hibernate.flushMode (FlushMode – AUTO | ALWAYS | COMMIT
| MANUAL)

If you modify an entity, Hibernate keeps these changes in the first-
level cache until it gets flushed. By default, this happens before each
query but you can control it by providing a value of the
org.hibernate.FlushMode enum as the org.hibernate.flushMode hint.
You can choose between:

AUTO Hibernate decides if the changes have to be written to
 the database,
ALWAYS the Session gets flushed before every query,
COMMIT Hibernate will not write any changes to the database
 until the transaction gets commited,
MANUAL you have to flush the Session yourself.

8. org.hibernate.readOnly (boolean)

If you will not apply any changes to the selected entities, you can set
the org.hibernate.readOnly hint to true. This allows Hibernate to
deactivate dirty checking for these entities and can provide a
performance benefit.

9. org.hibernate.fetchSize (Long – number of records)

Hibernate provides the value of this hint to the JDBC driver to define
the number of rows the driver shall receive in one batch. This can
improve the communication between the JDBC driver and the
database, if it’s supported by the driver.

http://www.thoughts-on-java.org/

11 JPA & Hibernate Query Hints

www.thoughts-on-java.org

10. org.hibernate.comment (String – custom comment)

If you set the hibernate.use_sql_comments property in your
persistence.xml file to true, Hibernate generates a comment for each
query and writes it to the log file. This can be useful, if you have to
analyze huge or complex SQL logs.

You can use the org.hibernate.comment hint to provide your own
comment for a query.

11. org.hibernate.cachable

If you want to use Hibernate’s query cache, you have to activate it in
the persistence.xml file and enable it for a specific query by setting
the org.hibernate.cachable hint to true.

http://www.thoughts-on-java.org/

